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1 Algebra of Holod

Petro Holod has proposed in 1983 (published
in 1984) a new infinite-dimensional Lie algebra
with the following basic elements:

Slα = λl
√
λ + aαXα, (1)

Tmα = λm
√
λ + a1

√
λ + a2

√
λ + a3√

λ + aα
Xα, (2)

where α ∈ 1, 3, l,m ∈ Z, Xα is a basis of so(3):

[Xα, Xβ] = εαβγXγ.

These basic elements satisfy the following rela-
tions:

[T lα, T
m
β ] = εαβγ(T

l+m+1
γ + aγT

l+m
γ ) (3a)

[T lα, S
m
β ] = εαβγ(S

l+m+1
γ + aβS

l+m
γ ) (3b)

[Slα, S
m
β ] = εαβγT

l+m
γ . (3c)

Remark. Note that the algebra of Holod pos-
sess an “even” subalgebra spanned over the ba-
sic elements Tmα , α ∈ 1, 3, l,m ∈ Z.
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The importance of the algebra of Holod in
the theory of integrable systems is explained by
the fact that it admits the Adler-Kostant-Symes
decomposition into a direct sum of two Lie sub-
algebras:

g̃ = g̃+ + g̃−. (4)

This property permits one to obtain a wide
set of commuting functions by restriction the
invariants of the coadjoint representation of g̃
onto the dual spaces of the subalgebras g̃±.

In the case of the algebra of Holod the subal-
gebras g̃± are defined as follows:

g̃+ = SpanC{Slα, Tmα , α ∈ 1, 3, l,m ≥ 0},
(5)

g̃− = SpanC{Slα, Tmα , α ∈ 1, 3, l,m < 0}.
(6)

Remark. Observe that the similar AKS de-
composition has also the “even” subalgebra of
the algebra of Holod. In this case one has that
g̃+ = SpanC{Tmα , α ∈ 1, 3, m ≥ 0},
g̃− = SpanC{Tmα , α ∈ 1, 3, m < 0}.
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Let us remind that the following definition
(Krichiver, Novikov 1986):

Definition. An infinite-dimensional Lie alge-
bra g̃ is called Z-quasigraded of type (p, q) if it
admits the decomposition:

g̃ =
∑
j∈Z

gj, such that [gi, gj] ⊂
q∑

k=−p

gi+j+k.

It is evident that the algebra of Holod is quasi-
graded, but the type of the quasigrading will
depend on how to define the spaces gj.

In 1999 (published 2000) I have made the fol-
lowing important observation:

Proposition Let g̃ be Z-quasigraded Lie al-
gebra of type (0, 1) . Then it admits the AKS
decomposition:

g̃ = g̃+ + g̃−, with g̃+ =
∑
j≥0

gj, g̃− =
∑
j<0

gj.

Remark. The even subalgebra of the Holod’s
algebra is also quasigraded. It is of the type
(0, 1) with gj ' R3.
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2 The first — “irrational” generalization

The first generalization of the Holod’s algebra
has several geometric interpretations.

2.1 The first generalization and higher genus curves

The first generalization of Holod’s algebra was
found by me in 1999 (published by us in 2000).

In more details let us consider the classical
matrix Lie algebras g = gl(n), so(n) and sp(n).
Let Xij i, j ∈ 1, n be their matrix basis.

Let ai, bi, i ∈ 1, n be arbitrary complex pa-
rameters. Let us consider the following irra-
tional “monomials” with the values in g:

Xm
ij = λm

√
biλ + ai

√
bjλ + ajXij.

Using the commutation relations in the alge-
bras g it is possible to show that the elements
Xm
ij , i, j ∈ 1, n, m ∈ Z span Lie algebras.
These “irrational” algebras may be viewed as

the algebras of meromorphic functions on the
(ramified) coverings of the hyperelliptic curve.
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In the case of the gl(n) the corresponding
commutation relations have the form:

[Xp
ij, X

q
kl] = biδkjX

p+q+1
il − bjδilXp+q+1

kj +

+ ajδkjX
p+q
il − aiδilX

p+q
kj .

In the case of the so(n) the commutation re-
lations are written as follows:

[Xp
ij, X

q
kl] =

bjδkjX
p+q+1
il −biδilXp+q+1

kj +bjδjlX
p+q+1
ki −biδkiXp+q+1

jl

+ajδkjX
p+q
il −aiδilX

p+q
kj +ajδjlX

p+q
ki −aiδkiX

p+q
jl

The algebra of Holod correspond to g = so(4).
The identification of the elements is following:

Sli = X l
4i, T

m
i = Xm

jk, (7)

where b1 = b2 = b3 = 1, b4 = 0, a4 = 1.
The “even” subalgebra of Holod correspond

in this picture to g = so(3). The identification
of the basic elements is the following:

Tmi = Xm
jk, where b1 = b2 = b3 = 1. (8)
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2.2 The first generalization and Lie pencils

The generalization of the Holod’s algebra is con-
nected also with the so-called “Lie pencils” or
pairs of compatible Lie brackets.

Definition. Two Lie brackets [ , ]0, [ , ]1 on
the linear space g are called compatible if their
arbitrary combination:

[ , ]λ = [ , ]0 + λ[ , ]1

is again a Lie bracket.
So the first idea is to “affinize” the algebra

g with the bracket [ , ]λ, considering the same
complex parameter λ of affinization as in the
above brackets, i.e. to consider the space g ⊗
Pol(λ, λ−1) with brackets [ , ]λ (Skrypnyk 2002):

[X(λ), Y (λ)]λ = [X(λ), Y (λ)]0+λ[X(λ), Y (λ)]1.

(here X(λ), Y (λ) ∈ g⊗ Pol(λ, λ−1))
It is easy to see that the above-defined algebra

is quasi-graded of the type (0, 1) and, hence,
admit AKS decomposition and may be used in
the theory of integrable systems.
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Let us now fix the compatible brackets on g,
where g is classical matrix Lie algebra, in the
following way:

[X, Y ]0 = [X, Y ]A ≡ XAY − Y AX,
[X, Y ]1 = [X, Y ]B ≡ XBY − Y BX,

where A and B are constant matrices such that

[X, Y ]A ∈ g, [X, Y ]B ∈ g,∀X, Y ∈ g.

The corresponding algebra

g̃A ≡ (g⊗ Pol(λ, λ−1), [ , ]A(λ))

is numbered by two numerical matrices A,B:

[ , ]λ = [ , ]A+λB.

The algebra of Holod in this picture corre-
spond to the case g = so(4), and the diagonal
matrices A and B:

A = diag(a1, a2, a3, 1), B = diag(1, 1, 1, 0).

The existence of the “hyperelliptic” or rather
“irrational” realization of Holod’s algebra is con-
nected with the fact that the following relation
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for the algebra (g ⊗ Pol(λ, λ−1), [ , ]λ) associ-
ated with the matrices A and B hold true:

[X(λ), Y (λ)]A(λ) =

= [
√
A(λ)X(λ)

√
A(λ),

√
A(λ)Y (λ)

√
A(λ)],

where A(λ) = A + λB.
In such a realization the basis in the algebra

g̃A ≡ (g⊗ Pol(λ, λ−1), [ , ]A(λ))

written with respect to the ordinary commuta-
tor consists of the irrational “monomials” of the
following form:

Xm
ij = λm

√
A(λ)Xij

√
A(λ),

which is in a full accord with the constructed
above “hyperelliptic” or “irrational” realization.
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2.3 The first generalization and classical r-matrices

In order to explain the relation of the material
above with the theory of classical r-matrix we
have to remind several definitions.

Definition 2. (Semenov 1983) The linear
map R: g̃ → g̃ is called a classical R-operator
if it satisfies “modified” Yang-Baxter equation:

R([R(X), Y ] + [X,R(Y )])− [R(X), R(Y )] =

=
1

4
[X, Y ], ∀X, Y ∈ g̃. (9)

The most important example of the classical
R-operators is the so-called AKS R-operators:

R =
1

2
(P+ − P−), (10)

which is known to satisfy modified classical Yang-
Baxter equation (9) if P± are the projection op-
erators onto the subalgebras g̃± in AKS decom-
position.
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Let g̃ be algebra of g-valued functions of one
complex variable u. It is known (Semenov, Rey-
man 1988) that if the R-operator possesses a
kernel i.e.:

R(X)(u1) =

∮
u2=0

(r12(u1, u2), X2(u2))2 du2,

(11)
where r12(u1, u2) is the g ⊗ g-valued function
of two complex variables, X2 ≡ 1 ⊗ X , ( , )
invariant non-degenerated bilinear form on g,
then the function r12(u1, u2) satisfies general-
ized classical Yang-Baxter equation (Maillet 1986):

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)]

− [r32(u3, u2), r13(u1, u3)], (12)

r12(u1, u2) ≡
dimg∑
α,β=1

rαβ(u1, u2)Xα⊗Xβ⊗ 1 etc.

In the case of skew-symmetric r-matrices when

r12(u1, u2) = −r21(u2, u1)
the equation (12) pass to the usual classical
Yang-Baxter equation found by Sklyanin in 1979.
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The constructed above algebra g̃A of the ir-
rational functions admit AKS decomposition,
possess AKS R-operator and, hence, classical
r-matrix. The direct calculation gives its fol-
lowing explicit form (T.Skrypnyk 2004):

rA(λ, µ) =

1

(λ− µ)

n∑
i,j=1

A(λ)1/2XijA(λ)1/2⊗A(µ)−1/2XjiA(µ)−1/2

In the caseA = diag(a1, ..., an),B = diag(b1, ..., bn)
this formula acquires the form:

rA(λ, µ) =
1

(λ− µ)

n∑
i,j=1

√
(biλ + ai)(bjλ + aj)√
(biµ + ai)(bjµ + aj)

Xij⊗Xji.

(13)
The discovered r-matrices are new: they are

not skew-symmetric and are out of the Belavin-
Drinfeld classification (Belavin-Drinfeld 1982).

By the other words, the third interpretation
of the generalization of Holod’s algebra is the
following: it is an algebra associated with a cer-
tain class of non-skew-symmetric r-matrices.
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2.4 List of new integrable systems associated with g̃A

1. Matrix and vector generalizations of anisotropic
Heisenberg magnet equations:

∂L

∂t
= [L,

∂2L

∂x2
] +

1

2

∂

∂x
(AL + LA)+

+ [L, [L,
∂L

∂x
]]A +

1

2
[L,AL + LA]A,

2. Vector generalizations of Landau-Lifshitz hi-
erarchy:

∂−→s
∂t

=
∂

∂x

(∂2−→s
∂x2

+3/2(
∂−→s
∂x

,
∂−→s
∂x

)−→s
)

+3/2(−→s , J−→s )
∂−→s
∂x

,

(14)
where J ≡ diag(a−11 , a−12 , ..., a−1n−1, 0).

2. Matrix generalizations of the anisotropic
chiral field equations:

∂U

∂x+
= [U, JA(V )],

∂V

∂x−
= [V, J−1A (U)],

(15)

where JA(V ) ≡ A1/2V A1/2, J−1A (U) ≡ A−1/2UA−1/2.
3. Vector generalizations of the anisotropic
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chiral field equations:

∂x+
−→s − =

(
c− − (−→s −,−→s −)

)1/2
Ĵ1/2−→s +,

∂x−
−→s + =

(
c+ − (−→s +,

−→s +)
)1/2

Ĵ−1/2−→s −,

where the (n− 2)× (n− 2) matrix Ĵ is defined

as follows: Ĵ = diag(a2, ..., an−1) and c± are
arbitrary constants.

4. New Gaudin-type integrable systems:

H(k) =

N∑
m=1

1

(νm − νk)

n∑
ij=1

√
(ai + νm)(aj + νm)

(ai + νk)(aj + νk)
S
(m)
ij S

(k)
ji

+

n∑
ij=1

ai
(ai + νk)

S
(k)
ij S

(k)
ji , where

in the case of gl(n):

{S(p)
ij , S

(q)
kl } = δpq(δkjS

(q)
il − δilS

(q)
kj ),

in the case of so(n):

{S(p)
ij , S

(q)
kl } = δpq(δkjS

(p)
il −δilS

(p)
kj +δjlS

(p)
ki −δkiS

(p)
jl ).
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3 The second — “elliptic” generalization

3.1 Algebra of Holod as elliptic algebra

Let us consider again the basis in the algebra of
Holod, written via the elliptic functions:

Slα ≡ λl(u)λα(u)σα,

Tmα ≡ λl(u)λβ(u)λγ(u)σα,

where α, β, γ ∈ 1, 3, l,m ∈ Z,

λ(u) = p(u)

is a Weierstrass elliptic function, the functions
λα(u) are defined via Jacobi elliptic functions:

λ1(u) =
1

sn(u)
, λ2(u) =

dn(u)

sn(u)
, λ2(u) =

cn(u)

sn(u)
(16)

and σα, α ∈ 1, 3 are the Pauli matrices consti-
tuting a basis in sl(2) ' so(3).

This definition of the basis is consistent with
a previous one by the virtue of the properties
of Weierstrass and Jacobi functions. Moreover,
it hints a way of another generalization of the
Holod’s algebra.
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3.2 The elliptic generalization and θ-functions

Let a ∈ Zn × Zn. Let us consider the mero-
morphic functions on the elliptic curve defined
in the following way:

λa(u) =
σa(u)σ′0(0)

σ0(u)σa(0)
(17)

Where σa(u) — is the θ-function with the char-
acteristics (a2/n+1/2, a1/n+1/2), a 6= 0 mod nZ×
nZ:

σa(u) ≡ θ(a2/n+1/2,a1/n+1/2)(u, τ ) =

=
∑
k∈Z

exp(πi(a2/n + 1/2 + k)2τ+

+ 2πi(a2/n + 1/2 + k)(u + a1/n + 1/2))
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The functions λa(u) have the following de-
composition in the Laurent power series in a
neighborhood of zero:

λa(u) =
1

u
+ca+bau+dau

2+gau
3+ · · · , (18)

where coefficients ca, ba, da, ga etc. are expressed
via θ-constants.

Let us consider the following example:
Example Let n = 2. In this case we have

the following set of possible indices {(a1, a2)} =
{(1, 1), (0, 1), (1, 0)}. The corresponding ellip-
tic functions λa(u) could be simply written via
the Jacobi elliptic functions:

λ(1,1)(u) =
dn(u)

sn(u)
,

λ(0,1)(u) =
1

sn(u)
,

λ(1,0)(u) =
cn(u)

sn(u)
.
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3.3 Special bases for sl(n) algebra.

Let us consider a Lie algebra g = sl(n,C). For
any a ∈ Z2

n, a 6= (0, 0) let us define matrix Ta:

Ta = T a1(1,0)T
a2
(0,1),

T(1,0) =


1 0 0 . . 0
0 ε 0 . . 0
0 0 ε2 . . 0
. . . . . .
. . . . . .
0 0 0 . . εn−1

 ,

T(0,1) =


0 1 0 . . 0
0 0 1 . . 0
. . . . . .
. . . . 1 .
0 . . . 0 1
1 0 0 . . 0

 .

It is known that the elements {Ta} form a basis
in sl(n). Commutation relation have the form:

[Ta, Tb] = αa,bTa+b, (19)

where αa,b = εa2b1 − εa1b2, ε = e
2πi
n .
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Example Let n = 2. In this case the basic
elements of sl(2,C) ' so(3,C) are:

T3 ≡ T(1,0) =

(
1 0
0 −1

)
,

T2 ≡ T(0,1) =

(
0 1
1 0

)
,

T1 ≡ T2T3 =

(
0 −1
1 0

)
.

Commutation relations in the chosen basis are:

[T1, T2] = −2T3, [T2, T3] = 2T1, [T1, T3] = 2T2.

Rescaling the generators T1 → 1
2T1, T2 →

i
2T2,

T3 → i
2T3 we obtain the standard so(3) com-

mutation relations:

[Ti, Tj] = −εijkTk.
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3.4 Elliptic sl(n)-valued Lie algebra.

Now we will define the elliptic Lie algebra E(sl(n)).
For this purpose we introduce certain elliptic
functions with the values in sl(n):

Y n
a (u) = Ta ⊗ λn(u)λa(u),

Xm
a (u) = −Ta ⊗ λm(u)

dλa(u)

du
.

By the direct calculations it is possible to
show that they satisfy the following commuta-
tion relations (T. Skrypnyk 2012):

[Xn
a , X

m
b ] = αa,b(X

n+m+1
a+b −(ba+bb−ba+b)Xn+m

a+b +

+(2cb−a(ba−bb)+(ca+cb)(ba−b+ba+b)−2(cabb+cbba))Y
n+m
a+b

[Xn
a , Y

m
b ] = αa,b(Y

n+m+1
a+b +(ba+ba+b−bb)Y n+m

a+b +

+ (ca+b − cb)Xn+m
a+b )

[Y n
a , Y

m
b ] = αa,b(X

n+m
a+b + (ca + cb)Y

n+m
a+b ).
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Let us now define elliptic Lie algebra E(sl(n))
as a linear space spanned over the above basis:

E(sl(n)) ≡ SpanC{X l
a, Y

m
b ; l,m ∈ Z, a, b ∈ Zn×Zn.}

The following theorem holds (T.Skrypnyk 2012):
Theorem
(i) Lie algebra E(sl(n)) admits AKS scheme

E(sl(n)) = E(sl(n))+ + E(sl(n))−,

E(sl(n))+ ≡ SpanC{X l
a, Y

m
b ; l,m ≥ 0, a, b ∈ Zn×Zn.},

E(sl(n))− ≡ SpanC{X l
a, Y

m
b ; l,m < 0, a, b ∈ Zn×Zn.}

(ii) E(sl(n)) is Z- quasi-graded Lie algebra
of the type (0, 3) and the quasigrading is con-
nected with AKS decomposition, i.e. its re-
striction to the subalgebras E(sl(n))± yields Z±
quasigrading of the algebras E(sl(n))±.

(iii) Algebras (E(sl(n)), E(sl(n))+, E(sl(n))−)
constitute Manin triple:

E(sl(n))∗+ = E(sl(n))−, E(sl(n))∗− = E(sl(n))+.
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Example Let us consider in more details an
sl(2,C) automorphic elliptic algebra. In this
case ca ≡ 0, ba+b + ba + bb = 0, ja = 2ba,
(here ja are the branching points of the elliptic
curve) and we obtain for the algebra E(sl(2))
the following commutation relations:

[Xn
a , X

m
b ] = αa,b(X

n+m+1
a+b + ja+bX

n+m
a+b )

[Xn
a , Y

m
b ] = αa,b(Y

n+m+1
a+b + jbY

n+m
a+b )

[Y n
a , Y

m
b ] = αa,bX

n+m
a+b .

As it follows from the example above, up to
the renaming of variables and parameters of
anisotropy it is exactly the algebra of Holod.
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3.5 The second generalization and elliptic r-matrices

Due to the Theorem above the algebra E(sl(n))
admits AKS shcheme and, hence, possess the
classical R-operators and classical r-matrix.

Using the results of the previous subsections
and the addition formulas for theta-functions
it is possible to prove the following theorem
(T.Skrypnyk 2013):

Theorem. The kernel (as the kernel of the in-
tegral operator) of the classical AKSR-operator
on E(sl(n)) coincide with the following classical
r-matrix:

r(u, v) =
∑

a∈Zn×Zn

λa(u− v)Ta ⊗ T−a.

The r-matrix is skew-symmetric and coincide
with elliptic r-matrix of Belavin (Belavin 1981).
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4 The r-matrix algebras

The connection of the above generalizations of
Holod’s algebra with the classical r-matrices sug-
gests its ultimate generalization (Skrypnyk 2013):

Theorem. With any classical r-matrix satis-
fying the generalized classical Yang-Baxter equa-
tion is possible to associate infinite-dimensional
Lie algebra g̃r with the following properties:

(i) AKS decomposition:
(ii) Z-quasigrading of the type (0, q), where

q ≥ 1 and the quasigrading is compatible with
AKS decomposition, i.e. its restriction to the
subalgebras g̃±r yields Z± quasigradings g̃±r .

(iii) if the r-matrix is skew-symmetric then
the algebras (g̃r, g̃

+
r , g̃

−
r ) constitute Manin triple:

(g̃±r )∗ = g̃∓r .
Remark. By the other words the algebra of

Holod is historically a second example of the r-
matrix Lie algebras. The first example is a loop
algebra corresponding to the rational r-matrix.
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Thank you for the attention !
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